К вопросу лечения и заполнения костных дефектов инфекционной этиологии. Обзор литературы
DOI:
https://doi.org/10.52889/1684-9280-2025-76-1-4-14Ключевые слова:
хронический остеомиелит, Staphylococcus aureus, биопленки, лечение, заменители кости, наноцеллюлоза, костный аллографтАннотация
Вопрос лечения и заполнения костных дефектов является актуальным по сей день. Остеомиелит - инфекционное воспаление всех элементов кости, затрагивающее костный мозг, губчатое и компактное вещество, надкостницу. Диагностика и лечение хронического остеомиелита является актуальной задачей травматологии и ортопедии. Данный постулат обусловлен высоким процентом осложнений, большими экономическими затратами при лечении пациентов, длительностью терапии.
Поиск и обзор литературы проведен в феврале 2024 года и осуществлялся по ключевым словам на сайтах Web of science, Scopus, PubMed, Wiley. Из полученной выборки отбирались статьи, соответствующие тематике исследования, предпочтение отдавалось работам 2014-2024 гг. Также изучены и включены в обзор диссертации травматолого-ортопедического профиля, выполненные на кафедре хирургических болезней Медицинского университета Караганды.
Условно обзор состоит из нескольких частей: 1) экспликация структурно-функциональных свойств биопленок на примере Staphylococcus aureus, как наиболее частого инфекционного этиофактора хронического остеомиелита; 2) сравнительно описательный анализ современных заполнителей костных дефектов; 3) дескрипция научных достижений кафедры хирургических болезней Медицинского университета Караганды в области применения костного аллографта. Такая дифференциация, по мнению авторов, позволила наиболее полно раскрыть тему статьи.
Библиографические ссылки
1. Wagner, J. M., Reinkemeier, F., Wallner, C., Dadras, M., Huber, J., Schmidt, S. V., Behr, B. (2019). Adipose-derived stromal cells are capable of restoring bone regeneration after post-traumatic osteomyelitis and modulate B-cell response. Stem cells translational medicine, 8(10), 1084-1091. https://doi.org/10.1002/sctm.18-0266
2. Henry, M., Lundy, F. H. (2021). Oral antibiotic management of acute osteomyelitis of the hand: outcomes and cost comparison to standard intravenous regimen. Hand, 16(4), 535-541. https://doi.org/10.1177/1558944719873145
3. Garcia del Pozo, E., Collazos, J., Carton, J. A., Camporro, D., Asensi, V. (2018). Factors predictive of relapse in adult bacterial osteomyelitis of long bones. BMC infectious diseases, 18, 1-11. https://doi.org/10.1186/s12879-018-3550-6
4. Ma, X., Han, S., Ma, J., Chen, X., Bai, W., Yan, W., Wang, K. (2018). Epidemiology, microbiology and therapeutic consequences of chronic osteomyelitis in northern China: A retrospective analysis of 255 Patients. Scientific reports, 8(1), 14895.
https://doi.org/10.1038/s41598-018-33106-6
5. Mina, E. G., Marques, C. N. (2016). Interaction of Staphylococcus aureus persister cells with the host when in a persister state and following awakening. Scientific Reports, 6(1), 31342. https://doi.org/10.1038/srep31342
6. Solano, C., Echeverz, M., Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current opinion in microbiology, 18, 96-104. https://doi.org/10.1016/j.mib.2014.02.008
7. Paharik, A. E., Horswill, A. R. (2016). The staphylococcal biofilm: adhesins, regulation, and host response. Virulence mechanisms of bacterial pathogens, 529-566. https://doi.org/10.1128/9781555819286.ch19
8. Huang, K., Lin, B., Liu, Y., Ren, H., Guo, Q. (2022). [Retracted] Correlation Analysis between Chronic Osteomyelitis and Bacterial Biofilm. Stem Cells International, 2022(1), 9433847. https://doi.org/10.1155/2022/9433847
9. Gristina, A. G., Naylor, P., Myrvik, Q. (1988). Infections from biomaterials and implants: a race for the surface. Medical progress through technology, 14(3-4), 205-224. Website. [Cited 01 Jan 2023]. Available from URL: https://europepmc.org/article/med/2978593
10. Rozis, M., Evangelopoulos, D. S., Pneumaticos, S. G. (2021). Orthopedic implant-related biofilm pathophysiology: a review of the literature. Cureus, 13(6). https://doi.org/10.7759/cureus.15634
11. Schilcher, K., Horswill, A. R. (2020). Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiology and Molecular Biology Reviews, 84(3), 10-1128. https://doi.org/10.1128/mmbr.00026-19
12. Bilgin, M., Dosler, S., Otuk, G. (2024). Antibiotic adjuvant activities of quorum sensing signal molecules DSF and BDSF against mature biofilms of Staphylococci. Journal of Chemotherapy, 36(1), 11-23. https://doi.org/10.1080/1120009X.2023.2270743
13. Salehi, P., Hasani, A., Soltani, E., Alizadeh, K., Memar, M. Y., Ahangarzadeh Rezaee, M., Hasani, A. Aptitude of Staphylococcus epidermidis Utilizing ACME, sesC, and sesK Genes for Biofilm Formation and Antibiotic Resistance, 2023, 23 р.
https://dx.doi.org/10.2139/ssrn.4613859
14. Wu, S., Huang, F., Zhang, H., Lei, L. (2019). Staphylococcus aureus biofilm organization modulated by YycFG two-component regulatory pathway. Journal of Orthopaedic Surgery and Research, 14, 1-8. https://doi.org/10.1186/s13018-018-1055-z
15. Ronin, D., Boyer, J., Alban, N., Natoli, R. M., Johnson, A., Kjellerup, B. V. (2022). Current and novel diagnostics for orthopedic implant biofilm infections: a review. APMIS, 130(2), 59-81. https://doi.org/10.1111/apm.13197
16. Khan, F., Pham, D. T., Oloketuyi, S. F., Kim, Y. M. (2020). Antibiotics application strategies to control biofilm formation in pathogenic bacteria. Current pharmaceutical biotechnology, 21(4), 270-286. https://doi.org/10.2174/1389201020666191112155905
17. Vollaro, A., Esposito, A., Esposito, E. P., Zarrilli, R., Guaragna, A., De Gregorio, E. (2020). PYED-1 inhibits biofilm formation and disrupts the preformed biofilm of Staphylococcus aureus. Antibiotics, 9(5), 240. https://doi.org/10.3390/antibiotics9050240
18. Ahn, K. B., Baik, J. E., Yun, C. H., Han, S. H. (2018). Lipoteichoic acid inhibits Staphylococcus aureus biofilm formation. Frontiers in microbiology, 9, 327. https://doi.org/10.3389/fmicb.2018.00327
19. Ausbacher, D., Miller, L. A., Goeres, D. M., Stewart, P. S., Strøm, M. B., Fallarero, A. (2023). α, α-disubstituted β-amino amides eliminate Staphylococcus aureus biofilms by membrane disruption and biomass removal. Biofilm, 6, 100151. https://doi.org/10.1016/j.bioflm.2023.100151
20. Paul, P., Chakraborty, P., Chatterjee, A., Sarker, R. K., Dastidar, D. G., Kundu, T., Tribedi, P. (2021). 1, 4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Archives of Microbiology, 203(3), 1183-1193. https://doi.org/10.1007/s00203-020-12117-1
21. Frapwell, C. J., Skipp, P. J., Howlin, R. P., Angus, E. M., Hu, Y., Coates, A. R. M., Webb, J. S. (2020). Antimicrobial activity of the quinoline derivative HT61 against Staphylococcus aureus biofilms. Antimicrobial Agents and Chemotherapy, 64(5), 10-1128.
https://doi.org/10.1128/aac.02073-19
22. Jordana, F., Le Visage, C., Weiss, P. (2017). Substituts osseux. médecine/sciences, 33(1), 60-65. https://doi.org/10.1051/medsci/20173301010
23. Wickramasinghe, M. L., Dias, G. J., Premadasa, K. M. G. P. (2022). A novel classification of bone graft materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110(7), 1724-1749. https://doi.org/10.1002/jbm.b.35029
24. Humm, G., Noor, S., Bridgeman, P., David, M., Bose, D. (2014). Adjuvant treatment of chronic osteomyelitis of the tibia following exogenous trauma using OSTEOSET®-T: a review of 21 patients in a regional trauma centre. Strategies in Trauma and Limb Reconstruction, 9, 157-161. https://doi.org/10.1007/s11751-014-0206-y
25. Mereddy, P., Nallamilli, S. R., Gowda, V. P., Kasha, S., Godey, S. K., Nallamilli, R. R., Meda, V. G. (2023). The use of Stimulan in bone and joint infections: A prospective multicentre study. Bone Joint Open, 4(7), 516-522.
https://doi.org/10.1302/2633-1462.47.BJO-2023-0036.R1
26. Niemann, M., Graef, F., Ahmad, S. S., Braun, K. F., Stöckle, U., Trampuz, A., Meller, S. (2022). Outcome analysis of the use of Cerament® in patients with chronic osteomyelitis and corticomedullary defects. Diagnostics, 12(5), 1207. https://doi.org/10.3390/diagnostics12051207
27. Sambri, A., Cevolani, L., Passarino, V., Bortoli, M., Parisi, S. C., Fiore, M., De Paolis, M. (2023). Mid-term results of singlestage surgery for patients with chronic osteomyelitis using antibiotic-loaded resorbable PerOssal® beads. Microorganisms, 11(7), 1623. https://doi.org/10.3390/microorganisms11071623
28. Ene, R., Nica, M., Ene, D., Cursaru, A., Cirstoiu, C. (2021). Review of calcium-sulphate-based ceramics and synthetic bone substitutes used for antibiotic delivery in PJI and osteomyelitis treatment. EFORT open reviews, 6(5), 297-304.
https://doi.org/10.1302/2058-5241.6.200083
29. Padrão, T., Coelho, C. C., Costa, P., Alegrete, N., Monteiro, F. J., Sousa, S. R. (2021). Combining local antibiotic delivery with heparinized nanohydroxyapatite/collagen bone substitute: A novel strategy for osteomyelitis treatment. Materials Science and Engineering: C, 119, 111329. https://doi.org/10.1016/j.msec.2020.111329
30. Alegrete, N., Sousa, S. R., Padrão, T., Carvalho, Â., Lucas, R., Canadas, R. F., Gutierres, M. (2023). Vancomycin-loaded, hanohydroxyapatite-based scaffold for osteomyelitis treatment: in vivo rabbit toxicological tests and in vivo efficacy tests in a sheep model. Bioengineering, 10(2), 206. https://doi.org/10.3390/bioengineering10020206
31. Mitrofanov, V. N., Orlinskaya, N. Y., Davydenko, D. V., Charykova, I. N., Aleinik, D. Y. (2021). Technology for repairing osteomyelitic bone defects using autologous mesenchymal stromal cells on a collagen matrix in experiment. Современные технологии в медицине, 13(1 (eng)), 42-49. https://doi.org/10.17691/stm2021.13.1.05
32. Wagner, J. M., Reinkemeier, F., Wallner, C., Dadras, M., Huber, J., Schmidt, S. V., Behr, B. (2019). Adipose-derived stromal cells are capable of restoring bone regeneration after post-traumatic osteomyelitis and modulate B-cell response. Stem cells translational medicine, 8(10), 1084-1091. https://doi.org/10.1002/sctm.18-0266
33. Radwan, N. H., Nasr, M., Ishak, R. A., Abdeltawab, N. F., Awad, G. A. (2020). Chitosan-calcium phosphate composite scaffolds for control of post-operative osteomyelitis: Fabrication, characterization, and in vitro–in vivo evaluation. carbohydrate Polymers, 244, 116482. https://doi.org/10.1016/j.carbpol.2020.116482
34. Tao, J., Zhang, Y., Shen, A., Yang, Y., Diao, L., Wang, L., Hu, Y. (2020). Injectable chitosan-based thermosensitive ydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. International Journal of Nanomedicine, 5855-5871. https://doi.org/10.2147/IJN.S247088
35. Berretta, J. M., Jennings, J. A., Courtney, H. S., Beenken, K. E., Smeltzer, M. S., Haggard, W. O. (2017). Blended chitosan paste for infection prevention: preliminary and preclinical evaluations. Clinical Orthopaedics and Related Research®, 475(7), 1857-1870. https://doi.org/10.1007/s11999-017-5231-y
36. Pawar, A. Y., Jadhav, S. R., Derle, D. V. (2021). Fabrication of Chitosan Based Antibacterial Implant for Multibacterial Bone Infection. Journal of Pharmaceutical Research International, 33(46A), 224-241. https://doi.org/10.9734/JPRI/2021/v33i46A32861
37. Zhao, X., Shen, Y. (2022). Island perforator muscle flaps for chronic osteomyelitis of the lower extremities: a retrospective analysis of 21 consecutive cases. Plastic and reconstructive surgery, 150(3), 677-687. https://doi.org/10.1097/PRS.0000000000009472
38. Ruan, W., Li, M., Guo, Q., Lin, B. (2021). Gastrocnemius muscle flap with vancomycin/gentamicin-calcium sulfate and autogenous iliac bone graft for the phase I treatment of localized osteomyelitis after tibial plateau fracture surgery. Journal of Orthopaedic Surgery and Research, 16(1), 341. https://doi.org/10.1186/s13018-021-02496-1
39. Hong, J. P. J., Goh, T. L., Choi, D. H., Kim, J. J., Suh, H. S. (2017). The efficacy of perforator flaps in the treatment of chronic osteomyelitis. Plastic and reconstructive surgery, 140(1), 179-188. 10.1097/PRS. https://doi.org/0000000000003460
40. Thai, D. Q., Jung, Y. K., Hahn, H. M., Lee, I. J. (2021). Factors affecting the outcome of lower extremity osteomyelitis treated with microvascular free flaps: an analysis of 65 patients. Journal of Orthopaedic Surgery and Research, 16(1), 535.
https://doi.org/10.1186/s13018-021-02686-x
41. Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., Shoseyov, O. (2016). Nanocellulose, a tiny fiber with huge applications. Current opinion in biotechnology, 39, 76-88. https://doi.org/10.1016/j.copbio.2016.01.002
42. DeLoid, G. M., Cao, X., Molina, R. M., Silva, D. I., Bhattacharya, K., Ng, K. W., Demokritou, P. (2019). Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environmental Science: Nano, 6(7), 2105-2115.
https://doi.org/10.1039/C9EN00184K
43. Paukkonen, H., Kunnari, M., Laurén, P., Hakkarainen, T., Auvinen, V. V., Oksanen, T., Laaksonen, T. (2017). Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. International journal of pharmaceutics, 532(1), 269-280. https://doi.org/10.1016/j.ijpharm.2017.09.002
44. Bundjaja, V., Sari, T. M., Soetaredjo, F. E., Yuliana, M., Angkawijaya, A. E., Ismadji, S., Santoso, S. P. (2020). Aqueous sorption of tetracycline using rarasaponin-modified nanocrystalline cellulose. Journal of Molecular Liquids, 301, 112433.
https://doi.org/10.1016/j.molliq.2019.112433
45. Huo, Y., Liu, Y., Xia, M., Du, H., Lin, Z., Li, B., Liu, H. (2022). Nanocellulose-based composite materials used in drug delivery systems. Polymers, 14(13), 2648. https://doi.org/10.3390/polym14132648
46. Van Vugt, T. A., Arts, J. J., Geurts, J. A. (2019). Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Frontiers in microbiology, 10, 1626. https://doi.org/10.3389/fmicb.2019.01626
47. Pruß, A. Wissenschaftliche Stellungnahme zu den Anforderungen im Rahmen der Herstellung des Arzneimittels Human-Femurkopf, thermodesinfiziert, gefrierkonserviert'. 2010. Access mode URL: https://www.telos-healthcare.ru/files/poleznoe/articles/61-article.pdf (1 Feb 2021)
48. Сагинова Д.А. Оперативное лечение хронического посттравматического остеомиелита с использованием биодеградируемого материала: дисс. ... на соискание ученой степени доктора философии (PhD). Режим доступа:
https://www.twirpx.com/file/3215410/
Saginova D.A. Operativnoe lechenie xronicheskogo posttravmaticheskogo osteomielita s ispol`zovaniem biodegradiruemogo materiala (Surgical treatment of chronic post-traumatic osteomyelitis using biodegradable material) [in Russian]: diss. ... na soiskanie uchenoj stepeni doktora filosofii (PhD). Rezhim dostupa: https://www.twirpx.com/file/3215410/
49. Ташметов, Э. Р. (2024). Влияние обогащённой тромбоцитами аутоплазмы в комбинации с костным графтом на репаративную регенерацию костного дефекта (экспериментальное исследование). Режим доступа:
http://repoz.kgmu.kz/handle/123456789/800
Tashmetov, E`. R. (2024). Vliyanie obogashhyonnoj trombocitami autoplazmy` v kombinacii s kostny`m graftom na reparativnuyu regeneraciyu kostnogo defekta (e`ksperimental`noe issledovanie) (Effect of platelet-rich autoplasm in combination with bone graft on reparative regeneration of bone defect (experimental study)) [in Russian]. Rezhim dostupa: http://repoz.kgmu.kz/handle/123456789/800
50. Кошанова, А. А. (2022). Разработка и экспериментально-морфологическое обоснование импрегнации антибиотиком костного аллографта заготовленного по Марбургской системе на модели остеомиелита. Website. Режим доступа: https://repoz.qmu.kz/
Koshanova, A. A. (2022). Razrabotka i e`ksperimental`no-morfologicheskoe obosnovanie impregnacii antibiotikom kostnogo allografta zagotovlennogo po Marburgskoj sisteme na modeli osteomielita (Development and experimental morphological substantiation of antibiotic impregnation of bone allograph prepared according to the Marburg system on the osteomyelitis model) [in Russian]. Rezhim dostupa: https://repoz.qmu.kz/
51. Тулеубаев, Б. Е., Сагинова, Д. А., Сагинов, А. М., Ташметов, Э. Р., Кошанова, А. А., Беляев, А. М. (2019). Импрегнация антибиотиком костного аллографта: микробиологический сравнительный анализ. Новости хирургии, 27(5), 489-495. Режим доступа: https://elib.vsmu.by/items/f7fb9ed7-8d73-4b94-b7af-d40dac6f8f73
Tuleubaev, B. E., Saginova, D. A., Saginov, A. M., Tashmetov, E`. R., Koshanova, A. A., Belyaev, A. M. (2019). Impregnaciya antibiotikom kostnogo allografta (Antibiotic impregnation of bone allograft: a microbiological comparative analysis) [in Russian]: mikrobiologicheskij sravnitel`ny`j analiz. Novosti xirurgii, 27(5), 489-495. Rezhim dostupa: https://elib.vsmu.by/items/f7fb9ed7-8d73-4b94-b7af-d40dac6f8f73
52. Tuleubaev, B., Saginova, D., Saginov, A., Tashmetov, E., Koshanova, A. (2020). Heat treated bone allograft as an antibiotic carrier for local application. Georgian Medical News, (306), 142-146. Website. [Cited 01 Sep 2020]. Available from URL: https://europepmc.org/article/med/33130662
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.