Современные концепции диагностики и лечения пациентов с крузартрозом
DOI:
https://doi.org/10.52889/1684-9280-2025-76-1-23-36Ключевые слова:
голеностопный сустав, остеоартрит, остеоартрит голеностопного сустава, стволовые клеткиАннотация
Крузартроз или остеоартроз голеностопного сустава представляет собой хроническое заболевание, которое, несмотря на сравнительно низкую распространенность, оказывает серьезное воздействие на качество жизни пациентов.
Данная обзорная статья анализирует современные подходы к диагностике и лечению крузартроза, акцентируя внимание на особенностях поражения активной и трудоспособной части населения, у которой это заболевание часто развивается после травм.
Рассматриваются как консервативные методы, включая фармакотерапию и физиотерапию, так и новые подходы в клеточной терапии, такие как применение мезенхимальных стволовых клеток и факторов роста. Также обсуждаются инновационные хирургические техники, включая артроскопические вмешательства, остеотомию и протезирование голеностопного сустава, что позволяет повысить качество жизни пациентов и снизить социально-экономические затраты. Авторы предлагают дифференцированный подход на всех этапах лечения, который способствует повышению его эффективности, а также замедляет прогрессирование остеоартроза, что особенно важно для пациентов молодого и среднего возраста.
Библиографические ссылки
1. Amaha, K., Yamaguchi, S., Teramoto, A., Kawasaki, Y., Shiko, Y., Kitamura, N. (2023). Clinical outcomes of surgical treatment for end-stage ankle osteoarthritis in patients aged≥ 75 years: a multicenter, retrospective study. Journal of Orthopaedic Surgery and Research, 18(1), 244. https://doi.org/10.1186/s13018-023-03734-4
2. Khlopas, H., Khlopas, A., Samuel, L. T., Ohliger, E., Sultan, A. A., Chughtai, M., Mont, M. A. (2019). Current concepts in osteoarthritis of the ankle. Surg Technol Int, 35, 280-294. https://demexmedical.cl/wp-content/uploads/2023/05/concepts_in_osteoarthritis.pdf
3. Minnig, M. C. C., Golightly, Y. M., Nelson, A. E. (2024). Epidemiology of osteoarthritis: literature update 2022–2023. Current Opinion in Rheumatology, 36(2), 108-112. https://doi.org/10.1097/BOR.0000000000000985
4. Muller, P., Skene, S. S., Chowdhury, K., Cro, S., Goldberg, A. J., Doré, C. J. (2020). A randomised, multi-centre trial of total ankle replacement versus ankle arthrodesis in the treatment of patients with end stage ankle osteoarthritis (TARVA): statistical analysis plan. Trials, 21, 1-9. https://doi.org/10.1186/s13063-019-3973-4
5. Powers, R. T., Dowd, T. C., Giza, E. (2021). Surgical treatment for osteochondral lesions of the talus. Arthroscopy: The Journal of Arthroscopic Related Surgery, 37(12), 3393-3396. https://doi.org/10.1016/j.arthro.2021.10.002
6. Weigelt, L., Laux, C. J., Urbanschitz, L., Espinosa, N., Klammer, G., Götschi, T., Wirth, S. H. (2020). Long-term prognosis after successful nonoperative treatment of osteochondral lesions of the talus: an observational 14-year follow-up study. Orthopaedic journal of sports medicine, 8(6), 2325967120924183. https://doi.org/10.1177/2325967120924183
7. Sharma, T., Farrugia, P. (2022). Early versus late weight bearing ankle mobilization in the postoperative management of ankle fractures: a systematic review and meta-analysis of randomized controlled trials. Foot and Ankle Surgery, 28(7), 827-835.
https://doi.org/10.1016/j.fas.2022.03.003
8. Gagné, O. J., Veljkovic, A., Glazebrook, M., Daniels, T. R., Penner, M. J., Wing, K. J., Younger, A. S. (2018). Prospective cohort study on the employment status of working age patients after recovery from ankle arthritis surgery. Foot & Ankle International, 39(6), 657-663. https://doi.org/10.1177/1071100718757722
9. Anastasio, A. T., Lau, B., Adams, S. (2024). Ankle Osteoarthritis. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 32(16), 738-746. https://doi.org/10.5435/JAAOS-D-23-00743
10. Herrera-Pérez, M., Valderrabano, V., Godoy-Santos, A. L., de César Netto, C., González-Martín, D., Tejero, S. (2022). Ankle osteoarthritis: comprehensive review and treatment algorithm proposal. EFORT open reviews, 7(7), 448-459. https://doi.org/10.1530/EOR-21-0117
11. Jiang N, Xu G, Li H, Yang J, Wang J, Shen L, Zeng X. [Progress in surgical treatment of osteochondral lesion of talus]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Mar 15;38(3):373-379. https://doi.org/10.7507/1002-1892.202311097
12. Brumat, P., Kunšič, O., Novak, S., Slokar, U., Pšenica, J., Topolovec, M., Trebše, R. (2022). The surgical treatment of osteoarthritis. Life, 12(7), 982. https://doi.org/10.3390/life12070982
13. Kvarda, P., Heisler, L., Krähenbühl, N., Steiner, C. S., Ruiz, R., Susdorf, R., Hintermann, B. (2021). 3D assessment in posttraumatic ankle osteoarthritis. Foot Ankle International, 42(2), 200-214. https://doi.org/10.1177/1071100720961315
14. Bruns, J., Habermann, C., Werner, M. (2021). Osteochondral lesions of the talus: a review on talus osteochondral injuries,
including osteochondritis dissecans. Cartilage, 13(1_suppl), 1380S-1401S. https://doi.org/10.1177/1947603520985182
15. Ikuta, Y., Nakasa, T., Sumii, J., Nekomoto, A., Adachi, N. (2021). Quantitative analysis of deltoid ligament degradation in patients with chronic ankle instability using computed tomographic images. Foot ankle international, 42(7), 952-958. https://doi.org/10.1177/1071100721997070
16. Steele, J. R., Dekker, T. J., Federer, A. E., Liles, J. L., Adams, S. B., Easley, M. E. (2018). Osteochondral lesions of the talus: current concepts in diagnosis and treatment. Foot ankle orthopaedics, 3(3), 2473011418779559. https://doi.org/10.1177/2473011418779559
17. Gross, C. E., Barfield, W., Schweizer, C., Rasch, H., Hirschmann, M. T., Hintermann, B., Knupp, M. (2018). The utility of the ankle SPECT/CT scan to predict functional and clinical outcomes in supramalleolar osteotomy patients. Journal of Orthopaedic Research®, 36(7), 2015-2021. https://doi.org/10.1002/jor.23860
18. Büber, N., Zanetti, M., Frigg, A., Saupe, N. (2018). Assessment of hindfoot alignment using MRI and standing hindfoot alignment radiographs (Saltzman view). Skeletal radiology, 47, 19-24. https://doi.org/10.1007/s00256-017-2744-0
19. Bezuglov, E., Khaitin, V., Lazarev, A., Brodskaia, A., Lyubushkina, A., Kubacheva, K., Maffulli, N. (2021). Asymptomatic foot and ankle abnormalities in elite professional soccer players. Orthopaedic journal of sports medicine, 9(1), 2325967120979994. https://doi.org/10.1177/2325967120979994
20. Chilmi, M. Z., Desnantyo, A. T., Widhiyanto, L., Wirashada, B. C. (2020). Low tibial and fibular osteotomy for treating varus-type post-traumatic ankle osteoarthritis: a case report. Malaysian Orthopaedic Journal, 14(2), 145. https://doi.org/10.5704/MOJ.2007.025
21. Yang, L., Yin, G., Zhu, J., Liu, H., Zhao, X., Xue, L., Liu, Z. (2023). Posterolateral approach for posterior malleolus fixation in ankle fractures: functional and radiological outcome based on Bartonicek classification. Archives of Orthopaedic and Trauma Surgery, 143(7), 4099-4109. https://doi.org/10.1007/s00402-022-04620-0
22. Yoon, H. K., Seok, S. O., Oh, H. C., Ha, J. W., Park, S., Park, S. H. (2022). Joint replacement surgery in patients with rheumatoid arthritis in South Korea: analysis of a large national database. Clinics in Orthopedic Surgery, 15(3), 395. https://doi.org/10.4055/cios21274
23. Verlaan, L., Boekesteijn, R. J., Oomen, P. W., Liu, W. Y., Peters, M. J. M., Emans, P. J., Meijer, K. (2019). Knee adduction moments are not increased in obese knee osteoarthritis patients during stair negotiation. Gait posture, 73, 154-160. https://doi.org/10.1016/j.gaitpost.2019.07.192
24. Frey, C., Zamora, J. (2007). The effects of obesity on orthopaedic foot and ankle pathology. Foot ankle international, 28(9), 996-999. https://doi.org/10.3113/FAI.2007.0996
25. Mohaddis, M., Maqsood, S. A., Ago, E., Singh, S., Naim, Z., Prasad, S. (2023). Enhancing Functional Rehabilitation Through Orthotic Interventions for Foot and Ankle Conditions: A Narrative Review. Cureus, 15(11). https://doi.org/10.7759/cureus.49103
26. Paterson, K. L., Gates, L. (2019). Clinical assessment and management of foot and ankle osteoarthritis: a review of current evidence and focus on pharmacological treatment. Drugs aging, 36, 203-211. https://doi.org/10.1007/s40266-019-00639-y
27. Primorac, D., Molnar, V., Matišić, V., Hudetz, D., Jeleč, Ž., Rod, E., Borić, I. (2021). Comprehensive review of knee osteoarthritis pharmacological treatment and the latest professional societies’ guidelines. Pharmaceuticals, 14(3), 205. https://doi.org/10.3390/ph14030205
28. Evangelidis, D., Jeong, S., Lin, G., Ehigie, N., Hamilton, P., Sott, A., Yousaf, S. (2023). Are foot and ankle corticosteroid injections safe during the COVID-19 pandemic? A single center prospective observational study. The Foot, 56, 102001. https://doi.org/10.1016/j.foot.2023.102001
29. Backhouse, M. R., Halstead, J., Roddy, E., Dhukaram, V., Chapman, A., Arnold, S., Bruce, J. (2023). A multi-professional survey of UK practice in the use of intra-articular corticosteroid injection for symptomatic first metatarsophalangeal joint osteoarthritis. Journal of Foot and Ankle Research, 16(1), 71. https://doi.org/10.1186/s13047-023-00672-6
30. Goldberg, A. J., Chowdhury, K., Bordea, E., Hauptmannova, I., Blackstone, J., Brooking, D., TARVA Study Group. (2022). Total ankle replacement versus arthrodesis for end-stage ankle osteoarthritis: a randomized controlled trial. Annals of internal medicine, 175(12), 1648-1657. https://doi.org/10.7326/M22-2058
31. Vannabouathong, C., Del Fabbro, G., Sales, B., Smith, C., Li, C. S., Yardley, D., Petrisor, B. A. (2018). Intra-articular injections in the treatment of symptoms from ankle arthritis: a systematic review. Foot ankle international, 39(10), 1141-1150.
https://doi.org/10.1177/1071100718779375
32. Bossert, M., Boublil, D., Parisaux, J. M., Bozgan, A. M., Richelme, E., Conrozier, T. (2016). Imaging guidance improves the results of viscosupplementation with HANOX-M-XL in patients with ankle osteoarthritis: results of a clinical survey in 50 patients treated in daily practice. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 9, CMAMD-S40401. https://doi.org/10.4137/CMAMD.S40401
33. Cohen, M. M., Altman, R. D., Hollstrom, R., Hollstrom, C., Sun, C., Gipson, B. (2008). Safety and efficacy of intra-articular sodium hyaluronate (Hyalgan®) in a randomized, double-blind study for osteoarthritis of the ankle. Foot Ankle International, 29(7), 657-663. https://doi.org/10.3113/FAI.2008.0657
34. Witteveen, A. G., Hofstad, C. J., Kerkhoffs, G. M. (2015). Hyaluronic acid and other conservative treatment options for osteoarthritis of the ankle. Cochrane Database of Systematic Reviews, (10). https://doi.org/10.1002/14651858.CD010643.pub2
35. Uğurlar, M., Sönmez, M. M., Uğurlar, Ö. Y., Adıyeke, L., Yıldırım, H., Eren, O. T. (2018). Effectiveness of four different treatment modalities in the treatment of chronic plantar fasciitis during a 36-month follow-up period: a randomized controlled trial. The Journal of Foot and Ankle Surgery, 57(5), 913-918. https://doi.org/10.1053/j.jfas.2018.03.017
36. Khan, M., Shanmugaraj, A., Prada, C., Patel, A., Babins, E., Bhandari, M. (2023). The role of hyaluronic acid for soft tissue indications: a systematic review and meta-analysis. Sports health, 15(1), 86-96. https://doi.org/10.1177/19417381211073316
37. Kapoor, V., Singh, A. K., Rogers, B. E., Thotala, D., Hallahan, D. E. (2019). PEGylated peptide to TIP1 is a novel targeting agent that binds specifically to various cancers in vivo. Journal of Controlled Release, 298, 194-201. https://doi.org/10.1016/j.jconrel.2019.02.008
38. Sun, S. F., Hsu, C. W., Lin, G. C., Lin, H. S., Chou, Y. J., Wu, S. Y., Huang, H. Y. (2021). Efficacy and safety of a single intraarticular injection of platelet-rich plasma on pain and physical function in patients with ankle osteoarthritis—a prospective study. The Journal of Foot and Ankle Surgery, 60(4), 676-682. https://doi.org/10.1053/j.jfas.2020.12.003
39. Glenn, R., Johns, W., Walley, K., Jackson III, J. B., Gonzalez, T. (2021). Topical review: bone marrow aspirate concentrate and its clinical use in foot and ankle surgery. Foot Ankle International, 42(9), 1205-1211. https://doi.org/10.1177/10711007211021017
40. Cho, H., Kim, H., Kim, Y. G., Kim, K. (2019). Recent clinical trials in adipose-derived stem cell mediated osteoarthritis treatment. Biotechnology and Bioprocess Engineering, 24, 839-853. https://doi.org/10.1007/s12257-019-0255-7
41. Emadedin, M., GHORBANI, L. M., Fazeli, R., Mohseni, F., Moghadasali, R., Mardpour, S., Aghdami, N. (2015). Long-term follow-up of intra-articular injection of autologous mesenchymal stem cells in patients with knee, ankle, or hip osteoarthritis.
https://www.sid.ir/en/VEWSSID/J_pdf/86920150601.pdf
42. Kim, S. H., Ha, C. W., Park, Y. B., Nam, E., Lee, J. E., Lee, H. J. (2019). Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Archives of orthopaedic and trauma surgery, 139, 971-980. https://doi.org/10.1007/s00402-019-03140-8
43. Osti, L., Del Buono, A., Maffulli, N. (2016). Arthroscopic debridement of the ankle for mild to moderate osteoarthritis: a midterm follow-up study in former professional soccer players. Journal of Orthopaedic Surgery and Research, 11, 1-7. https://doi.org/10.1186/s13018-016-0368-z
44. Chuckpaiwong, B., Berkson, E. M., Theodore, G. H. (2008). Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy: The Journal of Arthroscopic Related Surgery, 24(1), 106-112. https://doi.org/10.1016/j.arthro.2007.07.022
45. Bae, D. K., Yoon, K. H., Song, S. J. (2006). Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy: The Journal of Arthroscopic Related Surgery, 22(4), 367-374. https://doi.org/10.1016/j.arthro.2006.01.015
46. Thomas, B. L., Eldridge, S. E., Nosrati, B., Alvarez, M., Thorup, A. S., Nalesso, G., Dell'Accio, F. (2021). WNT3A‐loaded exosomes enable cartilage repair. Journal of extracellular vesicles, 10(7), e12088. https://doi.org/10.1002/jev2.12088
47. Torres, E. J., Ibañez, M., Recio, D. C., Fito, G. A., Gil, A. M., Torres, J. M. J. (2020). Retrograde drilling with tibial autograft in osteochondral lesions of the talar dome. Arthroscopy Techniques, 9(8), e1155-e1161. https://doi.org/10.1016/j.eats.2020.04.015
48. Powers, R. T., Dowd, T. C., Giza, E. (2021). Surgical treatment for osteochondral lesions of the talus. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 37(12), 3393-3396. https://doi.org/10.1016/j.arthro.2021.10.002
49. Ramponi, L., Yasui, Y., Murawski, C. D., Ferkel, R. D., DiGiovanni, C. W., Kerkhoffs, G. M., Kennedy, J. G. (2017). Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. The American journal of sports medicine, 45(7), 1698-1705. https://doi.org/10.1177/0363546516668292
50. Sabaghzadeh, A., Mirzaee, F., Rad, H. S., Bahramian, F., Alidousti, A., Aslani, H. (2020). Osteochondral autograft transfer (mosaicplasty) for treatment of patients with osteochondral lesions of talus. Chinese Journal of Traumatology, 23(01), 60-62. https://doi.org/10.1016/j.cjtee.2019.12.001
51. Gautier, E., Kolker, D., Jakob, R. P. (2002). Treatment of cartilage defects of the talus by autologous osteochondral grafts. The Journal of Bone Joint Surgery British Volume, 84(2), 237-244. https://doi.org/10.1302/0301-620x.84b2.11735
52. Kennedy, J. G., Murawski, C. D. (2011). The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage, 2(4), 327-336. https://doi.org/10.1177/1947603511400726
53. Hangody, L., Dobos, J., Baló, E., Pánics, G., Hangody, L. R., Berkes, I. (2010). Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. The American journal of sports medicine, 38(6), 1125-1133. https://doi.org/10.1177/0363546509360405
54. Reddy, S., Pedowitz, D. I., Parekh, S. G., Sennett, B. J., Okereke, E. (2007). The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. The American journal of sports medicine, 35(1), 80-85. https://doi.org/10.1177/0363546506290986
55. Chimutengwende-Gordon, M., Donaldson, J., Bentley, G. (2020). Current solutions for the treatment of chronic articular cartilage defects in the knee. EFORT open reviews, 5(3), 156-163. https://doi.org/10.1302/2058-5241.5.190031
56. Hangody, L., Füles, P. (2003). Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. JBJS, 85(suppl_2), 25-32. https://doi.org/10.2106/00004623-200300002-00004
57. Gross, A. E., Agnidis, Z., Hutchison, C. R. (2001). Osteochondral defects of the talus treated with fresh osteochondral allograft transplantation. Foot & Ankle International, 22(5), 385-391. https://doi.org/10.1177/107110070102200505
58. Görtz, S., De Young, A. J., Bugbee, W. D. (2010). Fresh osteochondral allografting for osteochondral lesions of the talus. Foot & ankle international, 31(4), 283-290. https://doi.org/10.3113/FAI.2010.0283
59. Winters, B. S., Raikin, S. M. (2013). The use of allograft in joint-preserving surgery for ankle osteochondral lesions and osteoarthritis. Foot and Ankle Clinics, 18(3), 529-542. https://doi.org/10.1016/j.fcl.2013.06.011
60. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New england journal of medicine, 331(14), 889-895. https://doi.org/10.1056/NEJM199410063311401
61. Giannini, S., Buda, R., Grigolo, B., Vannini, F. (2001). Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot ankle international, 22(6), 513-517. https://doi.org/10.1177/107110070102200612
62. Battaglia, M., Vannini, F., Buda, R., Cavallo, M., Ruffilli, A., Monti, C., Giannini, S. (2011). Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: mid-term T2-mapping MRI evaluation. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 1376-1384. https://doi.org/10.1007/s00167-011-1509-x
63. Gooding, C. R., Bartlett, W., Bentley, G., Skinner, J. A., Carrington, R., Flanagan, A. J. T. K. (2006). A prospective, ranomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. The Knee, 13(3), 203-210. https://doi.org/10.1016/j.knee.2006.02.011
64. Mitchell, M. E., Giza, E., Sullivan, M. R. (2009). Cartilage transplantation techniques for talar cartilage lesions. JAAOSJournal of the American Academy of Orthopaedic Surgeons, 17(7), 407-414. https://doi.org/10.5435/00124635-200907000-00001
65. Kim, T. J., Sun, J., Lu, S., Zhang, J., Wang, Y. (2014). The regulation of β-adrenergic receptor-mediated PKA activation by substrate stiffness via microtubule dynamics in human MSCs. Biomaterials, 35(29), 8348-8356. https://doi.org/10.1016/j.biomaterials.2014.06.018
66. Wang, C. C., Yang, K. C., Lin, K. H., Liu, Y. L., Yang, Y. T., Kuo, T. F., Chen, I. H. (2016). Expandable scaffold improves integration of tissue-engineered cartilage: an in vivo study in a rabbit model. Tissue Engineering Part A, 22(11-12), 873-884.
https://doi.org/10.1089/ten.tea.2015.0510
67. Magnan, B., Samaila, E., Bondi, M., Vecchini, E., Micheloni, G. M., Bartolozzi, P. (2012). Three‐dimensional matrix‐induced autologous chondrocytes implantation for osteochondral lesions of the talus: midterm results. Advances in orthopedics, 2012(1), 942174. https://doi.org/10.1155/2012/942174
68. Richter, M., Zech, S. (2019). Matrix-associated stem cell transplantation (MAST) in chondral lesions at the ankle as part of a complex surgical approach-5-year-follow-up in 100 patients. Foot and Ankle Surgery, 25(3), 264-271. https://doi.org/10.1016/j.fas.2017.11.004
69. Ibáñez Torres, L., Guillem Llobat, P., Marín Vázquez, M., Guillén Salazar, M. I. Connection between mesenchymal stem
cells therapy and osteoclasts in osteoarthritis. International Journal of Molecular Sciences, vol. 23, i. 9 (23 apr. 2022). http://dx.doi.org/https://doi.org/10.3390/ijms23094693
70. Ji, K., Ding, L., Chen, X., Dai, Y., Sun, F., Wu, G., Lu, W. (2020). Mesenchymal stem cells differentiation: mitochondria matter in osteogenesis or adipogenesis direction. Current Stem Cell Research Therapy, 15(7), 602-606. https://doi.org/10.2174/1574888X15666200324165655
71. Li, M., Yin, H., Yan, Z., Li, H., Wu, J., Wang, Y., Guo, Q. (2022). The immune microenvironment in cartilage injury and repair. Acta Biomaterialia, 140, 23-42. https://doi.org/10.1016/j.actbio.2021.12.006
72. Baer, P. C., Geiger, H. (2012). Adipose‐derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem cells international, 2012(1), 812693. https://doi.org/10.1155/2012/812693
73. Xiang, X. N., Zhu, S. Y., He, H. C., Yu, X., Xu, Y., He, C. Q. (2022). Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem cell research therapy, 13, 1-20. https://doi.org/10.1186/s13287-021-02689-9
74. Sarsenova, M., Raimagambetov, Y., Issabekova, A., Karzhauov, M., Kudaibergen, G., Akhmetkarimova, Z., Ogay, V. (2022). Regeneration of osteochondral defects by combined delivery of synovium-derived mesenchymal stem cells, TGF-β1 and BMP-4 in heparin-conjugated fibrin hydrogel. Polymers, 14(24), 5343. https://doi.org/10.3390/polym14245343
75. Smith, N. C., Beaman, D., Rozbruch, S. R., Glazebrook, M. A. (2012). Evidence-based indications for distraction ankle arthroplasty. Foot ankle international, 33(8), 632-636. https://doi.org/10.3113/FAI.2012.0632
76. Herrera‐Perez, M., Alrashidi, Y., Galhoum, A. E., Kahn, T. L., Valderrabano, V., Barg, A. (2019). Debridement and hinged motion distraction is superior to debridement alone in patients with ankle osteoarthritis: a prospective randomized controlled trial. Knee Surgery, Sports Traumatology, Arthroscopy, 27(9), 2802-2812. https://doi.org/10.1007/s00167-018-5156-3
77. Barg, A., Saltzman, C. L. (2019). Joint-preserving procedures in patients with varus deformity: role of supramalleolar osteotomies. Foot and Ankle Clinics, 24(2), 239-264. https://doi.org/10.1016/j.fcl.2019.02.004
78. Valderrabano, V., Paul, J., Monika, H., Pagenstert, G. I., Henninger, H. B., Barg, A. (2013). Joint-preserving surgery of valgus ankle osteoarthritis. Foot and ankle clinics, 18(3), 481-502. https://doi.org/10.1016/j.fcl.2013.06.008
79. Abdelzaher, M. G., Finzel, S., Abdelsalam, A., Enein, A. F., Abdelsalam, N. (2022). Ankle and foot pathologies in early rheumatoid arthritis, what can ultrasound tell us?. International Journal of Rheumatic Diseases, 25(11), 1315-1323. https://doi.org/10.1111/1756-185X.14426
80. Zhang, Y., Wang, X., Wang, X., Cao, J., Wang, H., Zhang, F. (2023). Allogeneic tendons in the treatment of malunited lateral malleolar avulsion fractures with chronic lateral ankle instability. BMC Musculoskeletal Disorders, 24(1), 273. https://doi.org/10.1186/s12891-023-06390-1
81. Bejarano-Pineda, L., DeOrio, J. K., Parekh, S. G. (2020). Combined Total Talus Replacement and Total Ankle Arthroplasty. Journal of Surgical Orthopaedic Advances, 29(4), 244-248. https://europepmc.org/article/med/33416486
82. Cody, E. A., Scott, D. J., Easley, M. E. (2018). Total ankle arthroplasty: a critical analysis review. JBJS reviews, 6(8), e8.
https://doi.org/10.2106/JBJS.RVW.17.00182
83. Jeyaseelan, L., Park, S. S. H., Al-Rumaih, H., Veljkovic, A., Penner, M. J., Wing, K. J., Younger, A. (2019). Outcomes following total ankle arthroplasty: a review of the registry data and current literature. Orthopedic Clinics, 50(4), 539-548.
https://doi.org/10.1016/j.ocl.2019.06.004
84. Gross, C. E., Palanca, A. A., DeOrio, J. K. (2018). Design rationale for total ankle arthroplasty systems: an update. JAAOSJournal of the American Academy of Orthopaedic Surgeons, 26(10), 353-359. https://doi.org/10.5435/JAAOS-D-16-00715
85. Alsayel, F., Alttahir, M., Mosca, M., Barg, A., Herrera-Pérez, M., Valderrabano, V. (2021). Mobile anatomical total ankle arthroplasty—improvement of talus recentralization. Journal of Clinical Medicine, 10(3), 554. https://doi.org/10.3390/jcm10030554
86. Goldberg, A. J., Chowdhury, K., Bordea, E., Hauptmannova, I., Blackstone, J., Brooking, D., TARVA Study Group. (2022). Total ankle replacement versus arthrodesis for end-stage ankle osteoarthritis: a randomized controlled trial. Annals of internal medicine, 175(12), 1648-1657. https://doi.org/10.7326/M22-2058
87. Arias, A., Dalmau, A., Alvarez, F., Viladot, R., Martín, X., Asunción, J. (2014). Artrodesis de tobillo abierta. En Artrodesis vs. Artroplastia de Tobillo. Estado Actual y Fuego Cruzado de Casos Clínicos. Eds Alvarez F, Viladot R, Martín X, Asunción J. Monografía, (6). https://fondoscience.com/sites/default/files/articles/pdf/mact.0601.fs140603-artrodesis-de-tobilloabierta.pdf
88. Ettinger, S., Altemeier, A., Stukenborg-Colsman, C., Yao, D., Plaass, C., Lerch, M., Claassen, L. (2021). Comparison of isolated screw to plate and screw fixation for tarsometatarsal arthrodesis including clinical outcome predictors. Foot Ankle International, 42(6), 734-743. https://doi.org/10.1177/1071100720980014
89. Martinelli, N., Bianchi, A., Raggi, G., Parrini, M. M., Cerbone, V., Sansone, V. (2022). Open versus arthroscopic ankle arthrodesis in high-risk patients: a comparative study. International Orthopaedics, 1-7. https://doi.org/10.1007/s00264-021-05233-9
90. Dimitrov, A. S., Westover, L., Jomha, N. M. (2021). Clinical use of talar prostheses. JBJS reviews, 9(6), e20. https://doi.org/10.2106/JBJS.RVW.20.00209
91. Steele, J. R., Dekker, T. J., Federer, A. E., Liles, J. L., Adams, S. B., Easley, M. E. (2018). Osteochondral lesions of the talus: current concepts in diagnosis and treatment. Foot ankle orthopaedics, 3(3), 2473011418779559. https://doi.org/10.1177/2473011418779559
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.